Mantle reflectivity structure beneath oceanic hotspots

نویسندگان

  • Yu Jeffrey Gu
  • Yuling An
  • Mauricio Sacchi
  • Ryan Schultz
  • Jeroen Ritsema
چکیده

S U M M A R Y This study applies high-resolution Radon transform to a large set of SS precursors and explores the mantle reflectivity structure beneath 17 potentially ‘deep-rooted’ hotspots. The combined reduced time (τ ) and ray parameter (p) information effectively constrains the depth, spatial distribution and sharpness of upper-/mid-mantle reflectors. The olivine to wadsleyite phase boundary is deeper than the ocean and global averages and produces a dominant τ –p domain signal. Laterally coherent observations of the deep 410-km seismic discontinuity, thin upper mantle transition zone and weak/absent 520-km reflector beneath hotspots make compelling arguments for large-scale, hot thermal anomalies in the top 400–600 km of the mantle. On the other hand, a relatively ‘flat’ and weak reflector at ∼653 km is inconsistent with ringwoodite to silicate perovskite + magnesiowüstite transformation at temperatures greater than 2000 K. The lack of a negative correlation between topography and temperature implies (1) average or below-average temperatures at 600–700 km depths or (2) high temperatures and a dominating majorite garnet to Ca perovskite phase transformation. The proper choice between these two scenarios will directly impact the origin and depth of mantle plumes beneath hotspots. We further identify lower-mantle reflectors at 800–950 and 1100–1350 km depths beneath a number of the hotspots. Their presence implies that the chemistry and thermodynamics of the mid-mantle may be more complex than suggested by seismic tomography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs

Where ρ0, α0, ∆T , η, κ are dimensional reference values of density of the background mantle, thermal expansivity, temperature difference between core-mantle boundary and surface, reference viscosity at temperature T = 0.5 (non-dimensional), and thermal diffusivity, respectively. g and h are dimensional gravitational acceleration and thickness of mantle, respectively. 1 Chemical complexity of h...

متن کامل

Seismological structure of the upper mantle: a regional comparison of seismic layering

Ž . We investigate seismic layering i.e., discontinuities, regions of anomalous velocity gradients, and anisotropy and its Ž . lateral variability in the upper mantle by comparing seismic models from three tectonic regions: old ;100 Ma Pacific Ž . plate, younger ;40 Ma Philippine Sea plate, and Precambrian western Australia. These models were constructed by combining two data sets: ScS-reflecti...

متن کامل

The elusive mantle plume

Mantle plumes are hypothetical hot, narrow mantle upwellings that are often invoked to explain hotspot volcanism with unusual geophysical and geochemical characteristics. The mantle plume is a well-established geological structure in computer modeling and laboratory experiments but an undisputed seismic detection of one has yet to be made. Vertically continuous low shear velocity anomalies in t...

متن کامل

Magmatic underplating of crust beneath the Laccadive Island, NW Indian Ocean

S U M M A R Y We investigate the crust and uppermost mantle velocity structure beneath the Laccadive Island through the inversion of teleseismic receiver functions following the neighbourhood algorithm. The velocity structure suggests that the 16-km thick-oceanic crust is underplated by 8-km thick high-velocity layer (Vs ∼ 4.25–4.4 km s−1; Vp ∼ 7.35–7.6 km s−1). The uppermost mantle shear veloc...

متن کامل

Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening

Seafloor topography has been a key observational constraint on the thermal evolution of oceanic lithosphere, which is the top boundary layer of convection in Earth's mantle. At least for the first ~70 Myr, the age progression of seafloor depth is known to follow the prediction of half-space cooling, and the subsidence rate is commonly believed to be ~350 m Ma. Here we show that, based on a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009